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Abstract

The generation of curvilinear coordinate meshes has been a powerful tool in computational fluid dynamics calcu-

lation in the computational modelling of the fluid flows around complex bodies, such as an airfoil or a complete air-

craft. This same technique may be applied to many other computational models. In this work the approach is used as

part of a computational model to generate simple geometries associated with biological forms or organisms. The model

adopted was first proposed by Cummings and simulates morphogenesis in terms of the geometrical changes occurring

during the growth and development of simple organisms. This model depends on the generation of a curvilinear co-

ordinate mesh on the surface of an organism. Previous work has concentrated on the model and its use in generating

axisymmetric shapes that are simple models of elementary �organisms�. In this work we describe how the model may be

extended to geometrical symmetry breaking. This paper describes the methodology of this extension and demonstrates

it in the simulation of tentacle growth. The resulting computational technique makes it possible to link models of cell

bio-chemistry and surface deformation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the model of morphogenesis proposed by Cummings [7–9,11], an organism that initially takes the

form of a sphere evolves into a certain geometry. The growth of the organism is modelled and is para-

metrised by the surface area of its epithelial layer. As the area increases, a pair of chemicals called mor-

phogens with concentrations denoted by m ¼ ðm1;m2Þ, interact in this epithelial layer, forming a spatial

pattern of morphogen concentrations. In an approach dating back to Turing [31], the biochemical reactions

are governed by a system of RD (reaction diffusion) equations
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om

ot
¼ D2mþ F ðmÞ: ð1Þ

Since Turing�s work, morphogens have been used in modelling pattern formation and the regeneration of

body parts in hydra [20,24,25]; the pre-patterning of animal coat markings [23,26] and the outgrowth of a

vertebrate limb bud [12]. In (1), D2 denotes the Laplace–Beltrami operator that governs the diffusion on the

surface and is characterised by the surface geometry. The Laplace–Beltrami operator has the form

D2 ¼
1

g
o2

on2
1

(
þ o2

on2
2

)
; ð2Þ

where surface geometry is specified by a quantity g that is related to the metric tensor components (ex-

plained below). The assumption is that any parametrisation of the surface (and hence its growth) depends

on the local concentration of the morphogens. One such parametrisation is in terms of surface curvatures,

such as the Gauss and the Mean curvatures 1 (see [4–6]). With the specification of the Gauss and Mean

curvatures KðmÞ and HðmÞ as functions of m, this morphogen pattern then alters the surface geometry
through the modification of KðmÞ and HðmÞ. Since a new geometry is formed, the operator D2 therefore is

changed accordingly, thus leading to a new morphogen pattern. The cycle then repeats thus forming a

morphogenetic feedback loop. The Laplace–Beltrami operator D2 is specified on abstract coordinates

ðn1; n2Þ which preserve the form of differential arc length and area under conformal transformation [6]. This

abstract coordinate is intrinsic to the particular surface geometry.

The formation of this intrinsic coordinate can be envisaged as mapping a planar mesh, i.e., a square

mesh, onto the non-planar surface such that the mesh remains orthogonal as well as isothermal on the

surface. Suppose a planar mesh defined by ½0 < n1 < a� � ½0 < n2 < b� is mapped onto a non-planar surface
parametrised by r ¼ rðxðn1; n2Þ; yðn1; n2Þ; zðn1; n2ÞÞ, an orthogonal mesh is then defined as one in which the

four corners of every cells on the mesh remain at right angle, i.e., the tangents in the two perpendicular

directions, or=on1 and or=on2, intersect at a right angle everywhere, i.e., their dot product vanishes,

or

on1

� or
on2

¼ or

on1

����
���� or

on2

����
���� cos h ¼ g12 ¼ g21 ¼ 0 with h ¼ p

2
; ð3Þ

where h is the angle between the two adjacent sides of a cell; and an isothermal mesh is one in which the

grid-lines are distributed such that the rate of change of arc length in the two directions are everywhere

equal, i.e., the magnitudes of the two perpendicular tangents, or=on1 and or=on2, are equal to

or

on1

� or
on1

¼ g11 ¼
or

on2

� or
on2

¼ g22 ¼ g: ð4Þ

Here g11; g12; g21 and g22 denote the four metric tensor components. The mapping of a square mesh onto a
general curved surface is illustrated in Fig. 1, with the two surface base vectors denoted by or=on1 and

or=on2, respectively. The arc length ds on the surface is determined by the metric g. On a general surface

with a mesh defined by the tangent vectors or=on1 and or=on2, ds is given by

ds2 ¼ dr � dr ¼ or

on1

dn1

�
þ or

on2

dn2

�2

¼ g11dn2
1 þ 2g12dn1 dn2 þ g22dn2

2: ð5Þ

When this mesh is orthogonal (g12 ¼ 0) and isothermal (g11 ¼ g22 ¼ g), ds becomes

1 A qualitative description of the Gauss and Mean curvatures and the associated surfaces are briefly discussed in Appendix A, a more

comprehensive description and the mathematical treatment can be found in [22].
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ds2 ¼ g dn2
1

�
þ dn2

2

�
: ð6Þ

Provided K is a known function, the metric tensor g can be computed by solving the Gauss equation

o2

on2
1

(
þ o2

on2
2

)
ln g þ 2gK ¼ 0: ð7Þ

The geometry in the Euclidean space E3 can be reconstructed using the knowledge of g. For this recon-
struction to be tractable, Cummings assumes an axisymmetric form for the organisms. Under this as-

sumption, we have the following:

q ¼ ffiffiffi
g

p
and z ¼

Z n1¼a

n1¼0

signðHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 
 dq

dn1

� �2
s

dn1; ð8Þ

where the vertical distance z is expressed as an integral function of the distance from the axis of symmetry q.
Fig. 2 provides a summary of the morphogenetic feedback loop of Cummings� model.

The model formulation at the current state only deals with axisymmetric geometries, such as a sphere, in
which one of the directions of the orthogonal isothermal mesh, n2, say, is identical to the azimuthal angle.

(Thus, it has the range of ½0 < n2 < 2p�.) As a result, the metric tensor has no dependence upon n2.

Fig. 2. An overview of Cummings model. The coupling between biochemistry and geometry is achieved via the input of K (Gauss

curvature) into the Gauss equation in the �Geometry� block and the input of g (metric) into pattern generation in the �Biochemistry�
block.

Fig. 1. The three base vectors of a body-fitted curvilinear coordinate system on an arbitrary surface. The surface lies on the

n3 ¼ constant plane in the n1; n2; n3 space.
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Nevertheless, when the geometry ceases to remain axisymmetric, the metric tensor g can be a function of

both n1 and n2. Thus the above integral equation that relates q and z no longer applies and one has to seek a

more general solution strategy.

The purpose of this paper is to: first introduce the mathematical formulation of an alternative algorithm

and methodology that allows the construction of a general intrinsic orthogonal isothermal mesh ðn1; n2Þ
that simulates non-axisymmetric geometries; then discuss the reconstruction of the geometry in E3 in

ðn1; n2Þ. The algorithm is then demonstrated to reproduce examples of non-axisymmetric geometries in E3

from their K and H specifications in ðn1; n2Þ.

2. Evolving surface and fluid flow over surface

The technique of mapping a mesh onto a surface has been used in computational fluid dynamics to

calculate flow properties around rigid body such as an airfoil (see Fig. 3). The idea is that rigid body such as

an airfoil often has shape that does not coincide with any grid-line in a conventional Cartesian mesh.

Numerical accuracy is then lost during computations on such a mesh. A transformation is then devised to
map a mesh onto the outline or surface of the body such that the outline or the surface of the body co-

incides with a grid-line or coordinate plane. Such a mesh is called the body-fitted-coordinate, or curvilinear

coordinate and the technique is called mesh generation [1,3,15,19,29].

With this concept in mind, the mapping of the orthogonal isothermal mesh ðn1; n2Þ to a arbitrary curved

(organism) surface is equivalent to the generation of a curvilinear coordinate system in E3, i.e. ðx1; x2; x3Þ.
The arbitrary surface lies on a constant value of one of the coordinates, i.e., one seeks the mapping from

ðn1; n2; n3 ¼ constantÞ into ðx1; x2; x3Þ. This re-introduces the surface normal to the n3 ¼ constant plane.

This surface normal n and the remaining two surface tangents form the base vectors in the curvilinear
coordinate system

n ¼ or

on3

¼ or

on1

�
� or

on2

�
or

on1

����
�

� or

on2

����; or

on1

and
or

on2

: ð9Þ

The curvilinear coordinate system and the corresponding base vectors are illustrated in Fig. 1. This tech-

nique may then, as will be shown below, be applied in the context of the approach of Cummings by

generating curvilinear coordinates on an evolving surface.

Fig. 3. The mapping of a body-fitted curvilinear coordinate system n; g onto a region surrounding a Karman–Trefftz airfoil [29]. The

grid-lines parallel with the airfoil are the g ¼ constant lines whereas the grid-lines perpendicular to the airfoil are the n ¼ constant lines.
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3. Curvilinear coordinate generation

In the generation of a curvilinear mesh on a surface, one solves for the mapping M : rðx1; x2; x3Þ !
ðn1; n2; n3Þ on a close boundary. This is a boundary value problem of the elliptic type (see [29]),

r2ni ¼ P i; i ¼ 1; 2; ð10Þ

where r2 ¼ o2=ox21 þ o2=ox22 þ o2=ox23 is the Laplacian operator. (The Laplace operator is used when it is

applied to the case of planar mesh generation, whereas the Laplace–Beltrami operator

D2 ¼
o

on1

g22ffiffiffiffiffiffi
G3

p o

on1

�

 g12ffiffiffiffiffiffi

G3

p o

on2

�
þ o

on2

g11ffiffiffiffiffiffi
G3

p o

on2

�

 g12ffiffiffiffiffiffi

G3

p o

on1

�
; ð11Þ

with

G3 ¼ g11g22 
 g212 ð12Þ

is used instead in the case of general non-planar surface mesh generation. The quantity G3 is the deter-

minant of the covariant metric tensor on the n3 plane, and is equal to the square of a differential area on the

mesh.) The non-homogeneous term P i is the mesh-density-control function, where P i ¼ 0 gives a uniform

mesh. The solution of an elliptic PDE such as (10) satisfies the maximum principle [30] thus ensuring a one-

to-one relationship in the mapping. Nevertheless, during morphogenesis, the surface definition ðx1; x2; x3Þ
changes while it is mapped onto a fixed domain in the curvilinear coordinate, ðn1; n2; n3Þ. The alternative is
to seek the solution of the mapping M : ðn1; n2; n3Þ ! rðx1; x2; x3Þ instead.

3.1. Mesh generation equation

The general mesh generation equation defining the surface rðx1; x2; x3Þ using coordinates n1; n2 is given by

g22
o2r

on2
1


 2g12
o2r

on1 on2

þ g11
o2r

on2
2

þ G3 D2n1

or

on1

�
þ D2n2

or

on2


¼ G3nðkI þ kIIÞ; ð13Þ

where kI; kII are the principal curvatures (see Appendix A) and D2 is the Laplace–Beltrami operator given in

(11). The derivation of this equation can be found in [33–35,37] (also see Appendix B). The normal

n ¼ ðX1;X2;X3Þ is found from the vector product in (9) to give

X1 ¼ J1=
ffiffiffiffiffiffi
G3

p
; X2 ¼ J2=

ffiffiffiffiffiffi
G3

p
; X3 ¼ J3=

ffiffiffiffiffiffi
G3

p
; ð14Þ

where

J1 ¼
ox2
on1

ox3
on2


 ox2
on2

ox3
on1

; J2 ¼
ox1
on2

ox3
on1


 ox1
on1

ox3
on2

; J3 ¼
ox1
on1

ox2
on2


 ox1
on2

ox2
on1

:

The Gauss and the Mean curvatures, K and H , are related to the two principal curvatures by the definitions

K � kIkII; H � kI þ kII
2

: ð15Þ

In the case of the model of Cummings the Gauss and Mean curvatures, K and H , are assumed to be defined

by the morphogens and so are specified by another part of the model.
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3.2. Time-dependent mesh generation

In the original Cummings model, the effects of the difference in time scale between growth and mor-

phogen distribution were used to argue that as biochemistry is �fast� in comparison with growth, the surface

geometry and growth could be viewed as developing as a series of steady states. In terms of computation,

one solves a set of boundary value problems. Although this approach is based on sound physical reasoning

and one can use the previous solutions as estimates to obtain the next one, it has by experiment been found

to be computationally advantageous to include transient effects by using the time-dependent form of the

mesh generation equation.

The time-dependent mesh generation equation can be derived from (13) as shown in [37]. When a surface
grid changes with time due to the change of the physical boundary, (10) is replaced by a parabolic equation

of the following form:

D2nd ¼ P d þ c
G3

ond

ot
; where d ¼ 1; 2; ð16Þ

where P d is an arbitrary prescribed mesh control function and c is a time scale. This is suggested in [21,37] as

the simplest form that includes a transient term applied to the curvilinear coordinates and is equivalent to

its elliptic counterpart.

Since the curvilinear variable n3 is always constant on the surface of the body, its time derivative van-

ishes, then the rate of the change of the surface or=ot is related to the rate of change of the remaining two

curvilinear variables n1; n2 by the relation (see [21,32,36])

or

ot
þ or

on1

on1

ot
þ or

on2

on2

ot
¼ 0: ð17Þ

Upon substitution of (16) and (17) into (13), one obtains

or

or
¼ Lr
 nG3ðkI þ kIIÞ; ð18Þ

where r ¼ t=c is the dimensionless time, the operator L is given by

L ¼ g22
o2

on2
1

(

 2g12

o2

on1 on2

þ g11
o2

on2
2

þ P 1 o

on1

þ P 2 o

on2

)
: ð19Þ

In (18), the control functions P 1 and P 2 are used to obtain the desired local mesh density on n1n2 space.

Thus, the two control functions can be set to zero if a uniform mesh is desired [30].

In time-dependent grid generation, both K and H are functions of time so that the curvilinear mesh

evolves as K and H changes. Alternatively, K and H may depend on a time-dependent variable such as the

morphogens, as is the case here, which has to be solved simultaneously with the grid generator.

3.3. Incorporation of orthogonal isothermal criteria

The mesh generation technique developed in the previous sections can now be applied to generate the

curvilinear coordinate on the organism�s surface geometry in Cummings model. In this model, the surface

coordinates are both orthogonal and isothermal, therefore upon applying the two conditions, g ¼ g11 ¼
g22 and g12 ¼ 0, to (18) and using the derived relation G3 ¼ g2, this mesh generation equation reduces

to
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or

or
¼ g

o2

on2
1

(
þ o2

on2
2

)
r
 2ngH ; ð20Þ

where

g ¼ ox1
on1

� �2

þ ox2
on1

� �2

þ ox3
on1

� �2

¼ ox1
on2

� �2

þ ox2
on2

� �2

þ ox3
on2

� �2

:

This method of mapping r onto n1; n2 by explicitly specifying g ¼ g11 ¼ g22. Note that in [27], the isothermal

condition g ¼ g11 ¼ g22 was interpreted as

f ðn1; n2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
: ð21Þ

In addition, g12 ¼ 0 in the mesh generation equation is known as the strong constraint method in [27]. This is

particularly used when the physical geometry is yet to be determined and has to be computed as part of the
solution.

The boundary orthogonality is achieved by using Neumann condition. In-so-doing, the control functions

P s in (19) remain as zero. 2 This method allows grid point to slide along the boundary until orthogonality

property is achieved, (see [17]). To apply Neumann condition along the boundary n1 ¼ l, the formula

g12 ¼ 0, i.e.,

ox1
on1

ox1
on2

þ ox2
on1

ox2
on2

þ ox3
on1

ox3
on2

¼ 0; ð22Þ

is used in conjunction with

ox3
on1

¼ R sech2n1 and
ox3
on2

¼ 0: ð23Þ

The isothermal criterion is then satisfied by using the formula g11 ¼ g22 (see (20)).

The geometry near the region n1 ¼ 
l is assumed to be a sphere, thus the boundary conditions are given

by

x1 ¼ R sechn1 cos n2; x2 ¼ R sechn1 sin n2; x3 ¼ R tanh n1; ð24Þ

which is the Mercator�s transformation [13] (also see Appendix C). The radius R can be obtained from

K ¼ 1=R2 or H ¼ 1=R. This is chosen because the mapping of a sphere solution already satisfies the or-

thogonal and isothermal criteria. Along the boundaries n2 ¼ 0; 2p, periodic conditions are incorporated
except for the value of x2, which is found from

x2ðn2 ¼ 0Þ ¼ x2ðn2 ¼ 2pÞ 
 2p: ð25Þ

This is chosen simply to enforce the continuity of the solution across the boundaries n2 ¼ 0; 2p.

3.4. Time-dependent version of Cummings model

The version of Cummings model used in this work can now be stated. The key aspect of Cummings

model that remains unchanged is that the biochemical reactions on the surface forms a morphogen

2 Alternatively, if Dirichlet condition is used, non-zero control functions P s have to be used in order to safeguard boundary

orthogonality [17].
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pattern of which the local concentration is used to define local surface curvatures (see [10,11]). The surface

geometry is obtained by solving the mesh generation equation, i.e. (20), to obtain the Euclidean geometry

r directly. The metric tensor g can be computed from r as a posterior calculation. Note that it is the Mean

curvature H that is used as the input to the geometry specification in (20). In this version, the growth

continues with time, one therefore solves a parabolic IBVP (initial boundary value problem). In contrast,

the metric tensor g is solved for directly as a solution of the Gauss equation, i.e. (7). The Euclidean
geometry r is then reconstructed using (8), i.e., it is obtained from posterior calculation. Moreover, from

(7), K is used as the input for geometry specification in the computation of g. The growth in the original is

parametrised by the surface area and it evolves in a series of steady states, i.e., one solves a elliptic BVP

(boundary value problem). In both versions, g has to be computed, either as a posterior calculation in

solving the mesh generation equation or directly from the Gauss equation, for the use of the geometry

definition in the Laplace–Beltrami operator in the computation of morphogens� concentration (see (1)).

The overall alternative algorithm is illustrated in Fig. 4 (compared with the original one illustrated in

Fig. 2).

4. Artificial curvatures generation

In the foregoing sections, an algorithm has been derived which can generate asymmetric geometries from

known curvature fields K;H . In a full model of the type proposed by Cummings, the curvature fields are

generated from the biochemistry. Before this can be investigated it is necessary to have a means of com-

putational model to simulate the �growth� of simple organisms. It is this computational model that will be
demonstrated here. The investigation of a suitable reaction scheme that is capable of generating asymmetric

geometries is the subject of our future work. For the purposes of this demonstration, it is necessary only to

generate the curvatures K and H somehow in order to model the shape change. The approach adopted here

is then to compute K and H as known components in the shape formation model and then to demonstrate

that the resulting model can compute the shape change of organisms.

4.1. Curvature formulation

In order to artificially generate the curvature fields of a surface, the surface has to be first parametrised

on known coordinates u1; u2. (Note that the u1; u2 parametrisation of the curvature fields may or may not

Fig. 4. An overview of an alternative algorithm of Cummings model. The coupling between �Biochemistry� and �Geometry� is achieved
via the input of H (Mean curvature) into the mesh generation in the �Geometry� block and the g (metric) into the pattern generation in

the �Biochemistry� block.
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coincide with the curvilinear coordinates n1; n2.) Suppose the spherical polar coordinate is used for the

parametrisation

rðu1; u2Þ ¼ ðR cos u1 cos u2;R cos u1 sin u2;R sin u1Þ; ð26Þ

where R ¼ Rðu1; u2Þ is a radius function. The curvatures K;H can be generated using the following formulae

(see [22]):

K ¼ hru1u1ru1ru2ihru2u2ru1ru2i 
 hru1u2ru1ru2i
2

kru1k
2kru2k

2 
 ru1 � ru2½ �2
� �2 ; ð27Þ

H ¼ hru1u1ru1ru2ikru2k
2 
 2hru1u2ru1ru2i ru1 � ru2½ � þ hru2u2ru1ru2ikru1k

2

2 kru1k
2kru2k

2 
 ru1 � ru2½ �2
� �3=2 ; ð28Þ

where the subscripts u1; u2 of r denote their corresponding partial derivatives and the operator habci denotes
the triple product a � b� c. With these formulae, the remaining task is the construction of the radius

function Rðu1; u2Þ for the generation of the desired geometry, which, in this case, should exhibit asymmetry.

4.2. An example of asymmetric geometry: tentacle

A simple form of asymmetry can be obtained by superposition of tentacles onto a simple axisymmetric

geometry such as a sphere. In terms of spherical polar coordinate (see (26)) the radius function for a sphere

is simply a constant Rs. The radius function for a tentacle unit can be generated by the following function:

Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ ¼

fAj

4
1
�

þ erf ½pj1ðu1 
 pj2Þ�
�
erfc½pj3ðu1
�


 pj2Þ�
�
1
�

þ erf ½qj1ðu2 
 qj2


 qj3Þ�
�
erfc½qj1ðu2
�

þ qj2 
 qj3Þ�
�
; ð29Þ

where A is the length of the fully grown tentacle and f ðtÞ controls the growth of the tentacle as a function of
time and the ps and qs are the shape controlling parameters. Parameters pj1, p

j
3, q

j
1 and qj2 control the aspect

ratio of the tentacle. The larger the numbers, the more elongated the tentacle. The parameter (pj2, q
j
3) is the

location of the tentacle in (u1,u2) coordinate. The superscript j denotes the index of the tentacle unit, thus

Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ stands for radius function of the jth tentacle. Suppose there are n number of

tentacles on the surface of a sphere of radius Rs, the radius function R of the complete structure is then

generated by the superposition of all the tentacle units onto Rs

Rðu1; u2Þ ¼ Rs þ
Xn
j¼1

Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ: ð30Þ

The partial derivatives of r needed for the computation of K and H ((27) and (28)) can be obtained by the

trivial exercise of differentiating (29) and substituting into the spherical polar coordinates derivatives de-

fined by (26).

4.3. Mesh generation and curvatures mapping

In Sections 4.1 and 4.2, the curvatures are generated in spherical polar coordinate ðu1; u2Þ, they have to

be mapped onto the curvilinear coordinate ðn1; n2Þ before they can be used in solving the mesh generation

equation. Nevertheless, it has to be realised that this mapping from ðu1; u2Þ to ðn1; n2Þ are yet to be found.
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Therefore, the mapping of local curvatures to the corresponding location in ðn1; n2Þ is then solved simul-

taneously with the mesh generation equation, as is shown in the next section.

5. Mapping of curvature fields

The mapping of local curvature value from coordinate ðu1; u2Þ to ðn1; n2Þ can be envisaged as a procedure

of mesh improvement, i.e., the generation of a mesh ðn1; n2Þ that has the desired qualities, such as the
orthogonal and isothermal properties in this case, from ðu1; u2Þ that does not. This method has been used to

improve the mesh quality of an existing mesh that has been generated using other technique such as

NURBS or algebraic grid generators [16,18]. It has also been used in [14] to generate conformal mappings

with different mesh aspect ratios on various 2D and 3D domains. Here, it is used to provide the desired

geometry on which an isothermal mesh is to be generated. The governing equation can be obtained from

the transformation of (13) through the change of variables from ðx1; x2; x3Þ to ðu1; u2Þ (see Appendix D).

This yields the equation

g
o2

on2
1

(
þ o2

on2
2

)
u
 J 2�DD2u


ou

or
¼ 0: ð31Þ

The Laplace–Beltrami operator applied to the components of u is given by:

�DD2u1 ¼
ffiffiffiffiffiffi
�GG3

p o

ou1

�gg22ffiffiffiffiffiffi
�GG3

p
 !"


 o

ou2

�gg12ffiffiffiffiffiffi
�GG3

p
 !#

;

�DD2u2 ¼
ffiffiffiffiffiffi
�GG3

p o

ou2

�gg11ffiffiffiffiffiffi
�GG3

p
 !"


 o

ou1

�gg12ffiffiffiffiffiffi
�GG3

p
 !#

;

ð32Þ

where the variables J , �gg11, �gg12 and �gg22 are given by

J ¼ ou1
on1

ou2
on2


 ou1
on2

ou2
on1

; �gg11 �
or

ou1
� or
ou1

; �gg12 �
or

ou1
� or
ou2

; �gg22 �
or

ou2
� or
ou2

: ð33Þ

Since the geometry rðx1; x2; x3Þ are parameterised in terms of ðu1; u2Þ, the quantities �ggij ði; j ¼ 1; 2Þ are exact.
Eq. (31) is solved with the following boundary conditions: at n1 ¼ 
l, sphere solution is used

u1 ¼ sin
1 tanh n1; u2 ¼ n2 ð34Þ

at n1 ¼ l, the orthogonal property is enforced, i.e., g12 ¼ 0 is incorporated, this gives

�gg12
ou1
on2

þ �gg22
ou2
on2

¼ 0: ð35Þ

This is used in conjunction with the following condition:

ou1
on1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 tanh2 n1

q
; ð36Þ

which has taken into account the assumption that the geometry approaches to a sphere in the vicinity of the

region n1 ¼ l. Along the boundaries n2 ¼ 0; 2p, periodic conditions are incorporated except for the func-

tional value of u2 which takes the form,
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u2ðn2 ¼ 0Þ ¼ u2ðn2 ¼ 2pÞ 
 2p: ð37Þ

These boundary conditions are applied in the same way as those described in Section 3.3.

6. Numerical implementation (Vlugr2)

Vlugr2 (Vectorised Local Uniform Grid Refinement 2D) [2] is used to solve the system of differential

equations, (20), and (Eq. (31)). This code has been designed to solve initial boundary value problems for

general systems of time-dependent partial differential equations in two dimensions of the form

F t; n1; n2; r;
or

ot
;
or

on1

;
or

on2

;
o2r

on2
1

;
o2r

on1 on2

;
o2r

on2
2

 !
¼ 0; ðn1; n2Þ 2 X; t > t0; ð38Þ

where r is the solution vector and X denotes an arbitrary domain that can be described by right-angled

polygons. Along the boundary oX, the boundary condition is assumed to have the form:

B t; n1; n2; r;
or

on1

;
or

on2

� �
¼ 0; ðn1; n2Þ 2 oX; t > t0; ð39Þ

and the initial condition is assumed to be

rðt0; n1; n2Þ ¼ r0ðn1; n2Þ; ðn1; n2Þ 2 X [ oX: ð40Þ

The system of PDEs are solved using the method of lines [28]. The underlying principle is that spatial

discretisation is used to transform the PDEs in both space and time into a system of ODEs in time alone.

The spatial discretisation can be done using various schemes such as finite differences or finite elements with
desired order of accuracy while the resultant system of ODEs can then be solved using standard methods

such as Runge–Kutta or BDF to preserve the accuracy and stability in the time integration. Modified

Newton�s method in combination with sparse matrix solver GMRES is used to solve the resultant system of

nonlinear algebraic equations (see [2]).

Finite differences are used in Vlugr2 for spatial discretisation with central difference formulae to ap-

proximate both the first and the second derivatives

or

oni
¼ riþ1 
 ri
1

2Dni
;

o2r

on2
i

¼ riþ1 
 ri þ ri
1

Dn2
i

; ð41Þ

which are both second order. Along the boundary, the derivatives are approximated using one-sided for-
mula

or

oni
¼ 3rn 
 4rn
1 þ rn
2

2ni
: ð42Þ

Spatial mesh refinement is used to improve solution accuracy with a user-defined maximum mesh level. The

solution accuracy is monitored by the curvature function spcmon

spcmonði; jÞ / Dn2
1

o2rc
on2

1

�����
�����

(����� þ Dn2
2

o2rc
on2

2

�����
�����
)�����

1

; ð43Þ

where i; j denote the current grid point, Dn1 and Dn2 are the grid size of the current mesh level, rc denotes
the component c of the solution vector r and the norm is the maximum among all solution components at
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the node ði; jÞ. When the local value of spcmon exceeds its tolerance, the current grid point and each of its

eight immediate neighbourhood will be subdivided uniformly into four sub-grid points. Thus, patches of

refined mesh are formed in the next mesh level where it is required. The system of PDEs are then re-

computed on this refined level with the initial estimate taken from the solution of the previous mesh level.

Interpolations are performed on those newly created grid points. Refinement terminates only when either

the solution accuracy has been reached or the maximum level has been reached.

The time integration in Vlugr2 is performed using second order BDF (Backward Differentiation For-

mula) method with variable time step control in order to take into account the stiffness of the time rate of
change of solution. The formula for the time derivative approximation is given by

or

ot
¼ a0rnþ1 þ a1rn þ a2rn
1; ð44Þ

where

a0 ¼
1þ 2a
1þ a

1

Dt
; a1 ¼

ð1þ aÞ2

1þ a
1

Dt
; a2 ¼

a2

1þ a
1

Dt
; a ¼ Dt

Dtold
: ð45Þ

Backward Euler (a ¼ 0) is used at the first step. The time step Dt is monitored at a all mesh levels and is

modified according to the function timmonðLÞ which depends on the time rate of change of solution

components at mesh level L

timmonðLÞ / Dt
orc
ot

����
����

� �����
����
1
; Dtnew ¼ 1

2timmonmax

Dt; ð46Þ

where Dtnew denotes the new time step and timmonmax is the maximum value of timmon among all mesh

levels.

When all the spatial and temporal accuracy has been satisfied, computation advances to the next time

step. The initial estimate of the next step is injected from the solution of the highest mesh level at the

previous step.

6.1. Computational mesh refinement strategy

A user defined mesh refinement facility is also provided in the subroutine chspcm in Vlugr2 so that

particular regions can be refined regardless of the local curvature of the solutions. This additional facility is

incorporated to monitor the local Gauss curvature Ki;j to insert extra refinement region where either of the

following occurs:
• Kiþ1;j � Ki;j < 0, this is incorporated in order to monitor region where invagination or evagination takes

place;

• oK=on1jiþ1;j � oK=on1ji;j < 0, this is incorporated simply to detect any large rate of change of local K.
These two monitor criteria are incorporated so that both changes in sign and large spatial changes in K can

be resolved as they incur the formation of �sharp� edges and saddle regions, thus represent crucial geo-

metrical development and have to be resolved in order to capture the corresponding geometry changes.

6.2. Overview of computational procedures

The overall computational procedures of mesh generation algorithm can now be stated (see Fig. 5). At

the beginning of a time step:

1. An initial estimate of the solutions of u0 and r0 are taken from the solution of the previous time step.
2. Vlugr2 is then called to form the residual of (31) and (20), at every point on the computational mesh:
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(a) use u0 to compute �gg11, �gg12 and �gg22 from geometry specifications; �DD2u1 and �DD2u2 using (32);

(b) compute the g by using the formula

g ¼ �gg11
ou1
on1

2

þ �gg12
ou1
on1

ou2
on1

þ �gg22
ou2
on1

2

;

(c) substitute g, J , �DD2u1, �DD2u2 into (31) to form the associated residual;

(d) input u0 into (28) in combination with geometry specification to compute the exact H ;

(e) use r0 to compute g using

g ¼ ox1
on1

� �2

þ ox2
on1

� �2

þ ox3
on1

� �2

;

and n using (14);

(f) substitute g, n and H into (20) to obtain its residual.

3. The system of residual is then iterated using Newton�s method to give u1 and r1,

4. The solution accuracy is measured, the complete procedure is repeated until subsequence modification

in solution falls below a tolerance.

The computation then advances to next time step. Note that the above procedure has not included the

solution algorithm in Vlugr2, it merely outlines the steps involved in forming the residual associated with
the governing equations.

7. Demonstrations of growing tentacles

Three examples are illustrated: (1) a single tentacle on a sphere, this shows the simplest non-axisym-

metric geometry that can be modelled, the resultant geometry however is bilaterally symmetrical; (2) three

unevenly spaced tentacles on a sphere, this shows a geometry that is neither axisymmetrical nor bilaterally
symmetrical; (3) unevenly spaced multi-tentacles of different sizes and shapes on a sphere, this demonstrates

a general asymmetric geometry, six tentacles were used in the experiment.

In all examples, the tentacle structure is generated using (30). The parameters defining the tentacles for

all examples are summarised in Table 1. The parameters A, p1 to p3 and q1 to q3 are defined in (30). In

Example 1, the radius function is given by

Fig. 5. An overview of computational scheme for mesh generation with artificial input of K;H .
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Rðu1; u2Þ ¼ Rs þ Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ; j ¼ 1; ð47Þ

where j ¼ 1 denotes the first tentacle parameters set is used (see Table 1). Similarly, in Example 2, the

overall radius function Rðu1; u2Þ of the three tentacle structure is obtained by the summation of three in-

dividual tentacle units

Rðu1; u2Þ ¼ Rs þ
X3
j¼1

Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ; ð48Þ

where the first three parameters sets are used. In Example 3, the overall radius function Rðu1; u2Þ is formed

by the summation of all six tentacle sets

Rðu1; u2Þ ¼ Rs þ
X6
j¼1

Rj
tðu1; u2;Aj; pj1; p

j
2; p

j
3; q

j
1; q

j
2; q

j
3Þ: ð49Þ

The Euclidean geometry of the three fully grown tentacle organisms are illustrated in Figs. 6(a)–(c). The

computational meshes corresponded to the three fully grown tentacle organisms are illustrated in Figs.
6(d)–(f). Only the region ½
2 < n1 < 2� � ½0 < n2 < 2p� is drawn since no refinement was performed on the

remaining regions. It can be seen that the mesh was refined in one region only in the case of a single tentacle

organism, whereas the mesh was refined in three different regions in the case of the three tentacle organism,

which corresponds to the three tentacles, and in the case of the six tentacle organism, refinement were

performed in six different regions.

Notice in Figs. 6(d)–(f), the location of the tentacle units have been mapped from the spherical coor-

dinate u1; u2 to the surface coordinate n1; n2. For example, in Example 1, the location of the single tentacle

is located at ðu1; u2Þ ¼ ðp12; q13Þ ¼ ð0:3p; pÞ, after the mapping, the corresponding location on the surface is
approximately ðn1; n2Þ ¼ ð0:9; pÞ. Thus, the mapping has been distorted in the vicinity of the tentacle, and is

deviated from that of a sphere. The mapping of a sphere is given by the Mercator transformation (see

Appendix C)

sin u1 ¼ tanh n1: ð50Þ

Upon the substitution of u1 ¼ 0:3p into (50) yields n1 ¼ 1:1. In contrast, the u2 coordinate remains close to

the n2. This is because of the bilateral symmetric nature of the tentacle. The location of the six tentacles in

u1; u2 coordinates and in the corresponding n1; n2 coordinates are listed in Table 2. The corresponding

location in n1 mapped by using the Mercator transformation are also included for comparison. (Note that
the n2 is not affected in the Mercator transformation and is equal to u2.) It is noticed that the distortion of

the mesh due to the formation of tentacle units is localised around the tentacles. However, when two

tentacles are sufficiently close, the corresponding meshes can affect each other. This can be observed in the

Table 1

Parameter values used for tentacle specification

jth Tentacle unit Aj pj1 pj2 pj3 qj1 qj2 qj3

1 2 2 0.3p 8 3 0.3 p
2 2 2 0.2p 8 3 0.3 0: _44p
3 2 2 0.2p 8 4 0.2 1: _44p
4 1 4 )0.1p 6 5 0.3 1:0 _55p
5 1.2 2 0.0 8 5 0.3 1: _33p
6 1.5 2 )0.1p 7 4 0.3 1: _66p
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Table 2

A comparison of the location of the tentacle units in u1; u2 coordinates and in the corresponding n1; n2 coordinates. The coordinate nm1
is the location assuming the Mercator transformation

jth Tentacle units u1 u2 n1 n2 nm1

1 0.3p p 0.90 p 1.1

2 0.2p 0: _44p 0.50 0:44p 0.67

3 0.2p 1: _44p 0.50 1:43p 0.67

4 )0.1p 1:0 _55p )0.38 1:03p )0.32
5 0.0 1: _33p 0.125 1:35p 0.0

6 )0.1p 1: _66p )0.44 1:67p )0.32

Fig. 6. The Euclidean geometry of (a) a single tentacle unit, (b) three tentacle units and (c) six tentacle units growing on a sphere; and

the associated computational meshes of (d) the single tentacle, (e) the three tentacles and (f) the six tentacles.
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case of the 4th, 5th and the 6th tentacles. Note that even though their u1 coordinates are identical, the

corresponding n1 coordinates are not the same.

The metric tensor g and the corresponding Gauss curvature K of the three examples of tentacle or-

ganisms are illustrated in Fig. 7. This figure shows that when the Gauss curvature K of a tentacle unit takes

the form of a �spike� with a region of negative values surrounding it. In the case of the example with three

tentacles, it can be seen that there are three spikes surrounded by a negative region. Similarly, there are six

spikes in Example 3. These examples therefore suggest that the Gauss curvature of an organism with

tentacles can be generated by the superposition of such K (a spike with a surrounding negative region) units
onto an existing K distribution. This knowledge is particular useful when a complex organism is generated

using only the Gauss curvature. This also provides a feasible method towards the engineering of the

parametrisation of the curvatures using morphogens� concentration.

Fig. 7. The metric tensor g of (a) a single tentacle unit, (b) three tentacle units and (c) six tentacle units growing on a sphere; and the

associated Gauss curvature of (d) the single tentacle, (e) the three tentacles and (f) the six tentacles.
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8. Towards generating realistic organisms

Part of the more extended goal of this work is to simulate the morphological evolution of a wide range of

organisms such as hydroid polyps, medusae and hydranth (see Fig. 8). As have been demonstrated in the

generation of tentacle organisms, the organisms can be created by the superposition of various components

of the final geometry onto the initial sphere. For example, the geometry of the polyp can be dissected into

the components of: (a) evagination (protruding or elongation in the formation of limb bud); (b) invagi-

nation (the in-folding of a region of cells, like the indenting of a soft rubber ball when poked, important of
the formation of a mouth and through-gut during development); and (c) a ring of tentacles (for food

capturing in certain organisms). In terms of spherical polar coordinate, both the invagination and evagi-

nation can be generated using the same parametrisation

Rvgðu1Þ ¼
fvgA
2

½1þ cosðp 
 /Þ� tanhðc/dÞ; / ¼ pðu1 
 bÞ
p=2
 b

; ð51Þ

where A is positive in the case of evagination and negative in the case of invagination, and f is a function of

time. Instead of superposing individual tentacles to form a ring, the ring of tentacles is generated as a

completed unit using the formula

Rringðu1; u2Þ ¼ fringA
1
 cos½nðu2 
 cÞ�

2

� �m
1þ cos½ðu1 
 bÞ=p�

2

� �
: ð52Þ

The entire organism is therefore generated by the summation of all the radius functions

Rðu1; u2Þ ¼ Rs þ Rvgðu1Þ þ Rringðu1; u2Þ; ð53Þ

Fig. 8. A set of computationally simulated cnidarians (top row) and the corresponding graphical illustrations (bottom row).
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where Rs is the radius of the initial sphere as before. The function f ðtÞ takes the form

f ðtÞ ¼
ðt 
 t0Þ=ðt1 
 t0Þ for t0 6 t6 t1;

1 for tP t1;

(
ð54Þ

where the interval ½t0; t1� ¼ ½0; 0:5� determines the evolution of both the invagination and evagination while

the interval ½t0; t1� ¼ ½0:5; 1:0� determines the evolution of the tentacle ring. This allow different components
to evolve one after another. The parameters used in the case of the polyp (shown in Fig. 8) are listed in

Table 3. These parametrisations and their derivatives are then used for the computations of the Gauss and

the Mean curvatures as in the case of the tentacle examples.

The evolution of the simulated polyp is illustrated in Fig. 9. Parts (a)–(d) of this figure show the sphere

evaginates on the top into a bud while it invaginates simultaneous at the centre the bud to form a �mouth�.
From parts (e)–(h) onward, both the evagination and invagination have already terminated, while the ring

of tentacles start to grow. At part (h), the completed organism is fully grown. The Mean curvature of the

corresponding snapshots are shown in Fig. 10.

Table 3

The parameter values used for polyp specification

Parameters Evagination Invagination Tentacle ring

A 1.4 )1.2 0.4

b 0: _55p 0: _33p p=2
 2p
c 2 4 0

d 4 4 /

p / / 0:06p
n / / 5

m / / 4

Fig. 9. The snapshots of the evolution of a sphere into a polyp. The frames represent the corresponding stages of growth at ap-

proximately: (a) 0.12; (b) 0.24; (c) 0.36; (d) 0.48; (e) 0.6; (f) 0.72; (g) 0.84; and (h) 0.96 time unit, respectively.
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Fig. 10. The snapshots of the evolution of the Mean curvature associated with the polyp. The frames represent the corresponding

stages of growth at approximately: (a) 0.12; (b) 0.24; (c) 0.36; (d) 0.48; (e) 0.6; (f) 0.72; (g) 0.84; and (h) 0.96 time unit, respectively.
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9. Conclusion

The method defined above and the results shown demonstrate the ability to model the shape change of

simple organisms. In particular the idea of Cummings that generated Mean and Gauss curvatures may be

used to compute non-axisymmetric changing surface geometries has been shown to work in a practical

system for generating shape change. It is now possible to investigate the detailed chemical interactions that

may be plausible agents for shape change. Examples of such interactions are given by Cummings in recent

work [10,11]. Research into which agents to use will form the basis of our future work.
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Appendix A. A brief description of surface curvatures

The nature of a surface, i.e., whether it is concave or convex, around a general point, p, can be described

by the rate of change of tangents (or the curvatures) at that point, just as a curve can be described by same

quantity. Although it is possible to draw infinitely many curves passing through p on a surface. There are

two curves that intersect in directions perpendicular with each other and are associated with the maximum

and the minimum curvatures at p. The two curvatures, denoted by kI and kII, are called the principal

curvatures (illustrated in Fig. 11). It is a convention to associate a positive k with a curve on a convex

surface and a negative k on a concave one. Therefore, when the curvature k varies between two positive

values, i.e., when both kI and kII are positive, they describe a convex surface. However, when kI and kII span
from negative to positive, they describe a saddle surface. When kI and kII span from zero to a non-zero

value, they describe either a ridge (denoted by a positive maximum and zero minimum curvature) or a

valley (characterised by a zero maximum and a negative minimum curvature). When both kI and kII are
zero, the surface is a plane. It is possible to describe a surface with the Gauss and the Mean curvatures K
and H which are defined in terms of kI and kII as follows,

K ¼ kIkII; H ¼ ðkI þ kIIÞ=2: ðA:1Þ

A brief graphical descriptions of the nature of a surface and its corresponding K and H are illustrated in

Fig. 12.

Fig. 11. An illustration of the curves C1 and C2, passing through a general point p on a surface, that are associated with the maximum

and the minimum curvatures kI and kII. The vector n denotes the surface normal.
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Appendix B. Derivation of the mesh generation equation

The mesh generator can be derived from the equations of Gauss (see [33–35,37])

o2r

on1 on1

¼ � 1
11

or

on1

þ � 2
11

or

on2

þ b11
or

on3

; ðB:1Þ

o2r

on1 on2

¼ � 1
12

or

on1

þ � 2
12

or

on2

þ b12
or

on3

; ðB:2Þ

o2r

on2 on2

¼ � 1
22

or

on1

þ � 2
22

or

on2

þ b22
or

on3

; ðB:3Þ

which are the rate of change of the two tangent vectors or=on1; or=on2 in the two directions n1; n2, i.e., their

curvatures. Performing g22� (B.1) 
2g12� (B.2) þg11� (B.3) yields

g22
o2r

on2
1


 2g12
o2r

on1 on2

þ g11
o2r

on2
2

¼ g22�
1
11

�

 2g12�

1
12 þ g11�

1
22

� or

on1

þ g22�
2
11

�

 2g12�

2
12

þ g11�
2
22

� or

on2

þ g22b11f 
 2g12b12 þ g11b22g
or

on3

: ðB:4Þ

Using the formulae

g11 ¼ g22
G3

; g12 ¼ g21 ¼ 
 g12
G3

; g22 ¼ g11
G3

; G3 ¼ g11g22 
 g212;

� n
ij ¼ gkn½ij; k�; ½ij; k� ¼ 1

2

ogik
onj

�
þ ogjk

oni

 ogij

onk

�
; ðB:5Þ

and expanding

� 1
11 ¼ g11½11; 1� þ g12½11; 2� ¼ g22

2G3

og11
on1


 g12
2G3

2
og12
on1

�

 og11

on2

�
; ðB:6Þ

� 1
12 ¼ g11½12; 1� þ g12½12; 2� ¼ g22

2G3

og11
on2


 g12
2G3

og22
on1

; ðB:7Þ

� 1
22 ¼ g11½22; 1� þ g12½22; 2� ¼ g22

2G3

2
og12
on2

�

 og22

on1

�

 g12
2G3

og22
on2

ðB:8Þ

Fig. 12. A graphical description of various natures of a surface and the associated K and H . The surface tangents rn1 , rn2 and n are also

shown.
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it can be readily shown that

g22�
1
11 
 2g12�

1
12 þ g11�

1
22 ¼ 
G3D2n1 ðB:9Þ

and similarly

g22�
2
11 
 2g12�

2
12 þ g11�

2
22 ¼ 
G3D2n2 ðB:10Þ

where D2 is the Laplace–Beltrami operator,

D2 ¼
o

on1

g22ffiffiffiffiffiffi
G3

p o

on1

�

 g12ffiffiffiffiffiffi

G3

p o

on2

�
þ o

on2

g11ffiffiffiffiffiffi
G3

p o

on2

�

 g12ffiffiffiffiffiffi

G3

p o

on1

�
: ðB:11Þ

Realising that the two principal curvatures kI and kII can be found by finding the extrema from the defi-

nition [22]

kn ¼
b11 þ 2b12k þ b22k

2

g11 þ 2g12k þ g22k
2
: ðB:12Þ

(Here k is a variable and it denotes the principal direction.) The sum of the two principal curvatures kI þ kII
can be readily obtained as

G3ðkI þ kIIÞ ¼ g22b11 
 2g12b12 þ g11b22 ¼ G32H : ðB:13Þ

Combining (B.4) and (B.13) and upon realising n ¼ or=on3, it yields

g22
o2r

on2
1


 2g12
o2r

on1 on2

þ g11
o2r

on2
2

þ G3 D2n1

or

on1

�
þ D2n2

or

on2


¼ nG32H : ðB:14Þ

Appendix C. Mercator transformation

The Mercator transformation relates the spherical polar coordinate r ¼ ðR cos h cos/;R cos h
sin/;R sin hÞ to the orthogonal isothermal curvilinear coordinate rðR; n1; n2Þ and can be readily obtained as

follows: Upon realising that a sphere is a surface of revolution and that n2 ¼ /, the curvilinear coordinate
can be given by

rðn1; n2Þ ¼ ðF ðn1Þ cos n2; F ðn1Þ sin n2;Gðn1ÞÞ: ðC:1Þ

By applying the isothermal conditions

or

on1

� or
on1

¼ dF
dn1

� �2

þ dG
dn1

� �2

¼ or

on2

� or
on2

¼ F ðn1Þ2: ðC:2Þ

Moreover, a comparison with the spherical polar coordinate yields

F ðn1Þ ¼ R cos h; Gðn1Þ ¼ R sin h; ðC:3Þ

which gives

Gðn1Þ2 ¼ R2 
 F ðn1Þ2; hence
dG
dn1

� �2

¼ F ðn1Þ2

R2 
 F ðn1Þ2
dF
dn1

� �2

: ðC:4Þ
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Upon substitution of (C.4) into (C.2) yields an ode for F ðn1Þ

dF
dn1

¼ � 1

R
F ðn1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 
 F ðn1Þ2

q
: ðC:5Þ

(The positive sign is chosen such that the top, h ¼ p=2, corresponds to n1 ¼ l.) Upon solving for F ðn1Þ
yields

F ðn1Þ ¼ cos h ¼ sechn1; Gðn1Þ ¼ sin h ¼ tanh n1; ðC:6Þ

which, upon substituting back into (C.1), gives the Mercator transformation.

Appendix D. Derivation of the mapping equation

The equation that governs the mapping from ðu1; u2Þ to ðn1; n2Þ can be derived from (13), i.e.,

g22
o2r

on2
1


 2g12
o2r

on1 on2

þ g11
o2r

on2
2

þ G3 D2n1

or

on1

�
þ D2n2

or

on2


¼ nG32H : ðD:1Þ

Upon applying chain rule, o=ona ¼ o=ou1ðou1=onaÞ þ o=ou2ðou2=onaÞ ða ¼ 1; 2Þ, the first three terms on the

LHS leads to

g22
o2r

on2
1


 2g12
o2r

on1 on2

þ g11
o2r

on2
2

¼ J 2 �gg22
o2r

ou21

�

 2�gg12

o2r

ou1 ou2
þ �gg11

o2r

ou22

�
þL1u1

or

ou1
þL1u2

or

ou2
;

ðD:2Þ

where the operator L1 stands for

L1 ¼ g22
o2

on2
1


 2g12
o2

on1 on2

þ g11
o2

on2
2

: ðD:3Þ

Similarly, the last two terms on the LHS yields

G3 D2n1

or

on1

�
þ D2n2

or

on2

�
¼ G3 L2u1

or

ou1

�
þL2u1

or

ou2

�
; ðD:4Þ

where the operator L2 stands for

L2 ¼ D2n1

o

on1

þ D2n2

o

on2

: ðD:5Þ

Since nðkI þ kIIÞ in ðn1; n2Þ are identical to �nnð�kkI þ �kkIIÞ ¼ �DD2r in ðu1; u2Þ, i.e., they are invariant quantities, we

have on the RHS

G3
�DD2r ¼ J 2 �DD2u1

or

ou1

�
þ �DD2u2

or

ou2
þ �gg22

o2r

ou21

�

 2�gg12

o2r

ou1 ou2
þ �gg11

o2r

ou22

�
: ðD:6Þ

(Note that the relation G3 ¼ �GG3J 2 has been used.) The functions �DD2u1 and �DD2u2 in (D.6) are given in (32).

Upon regrouping (D.2), (D.4) and (D.6) yields

L1u1
h


 J 2�DD2u1 þ G3L2u1
i or

ou1
þ L1u2
h


 J 2�DD2u2 þ G3L2u2
i or

ou2
¼ 0: ðD:7Þ
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The transient term o=ot is then incorporated into (D.7) by setting

D2n1 ¼ P þ c
G3

on1

ot
; D2n2 ¼ Qþ c

G3

on2

ot
;

ou1
ot

¼ 
 ou1
on1

on1

ot

�
þ ou1
on2

on2

ot

�
;

ou2
ot

¼ 
 ou2
on1

on1

ot

�
þ ou2
on2

on2

ot

�
; ðD:8Þ

and substituting into the operator L2 in (D.4) to give

L1u1

�

 J 2�DD2u1 þ G3 P

ou1
on1

�
þ Q

ou1
on2


 c
G3

ou1
ot

�
or

ou1
þ L1u2

�

 J 2�DD2u2 þ G3 P

ou2
on1

�
þ Q

ou2
on2


 c
G3

ou2
ot

�
or

ou2
¼ 0: ðD:9Þ

Upon equating the coefficients of or=ou1 and or=ou2 to zero yields the pair of equations governing u1 and u2,
respectively. Applying the orthogonal and isothermal properties into (D.9) and setting P ¼ Q ¼ 0; r ¼ t=c
yields (31).
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